In vivo therapeutic efficacy and pharmacokinetics of colistin sulfate in an experimental model of enterotoxigenic Escherichia coli infection in weaned pigs
نویسندگان
چکیده
Enterotoxigenic Escherichia coli (ETEC: F4) associated with post-weaning diarrhea (PWD) in pigs has developed resistance against several antimicrobial families, leading to increased use of colistin sulfate (CS) for the treatment of this disease. The objective of this study was to determine the efficacy of oral CS treatment in experimental PWD due to ETEC: F4 challenge and determine the effect of this challenge on CS intestinal absorption. In this study, 96 pigs were divided into two trials based on CS dose (100 000 or 50 000 IU/kg). Fecal shedding of ETEC: F4, total E. coli, and CS-resistant E. coli, diarrhea scores, and weight changes were evaluated. Colistin sulfate plasma concentrations were determined by HPLC-MS/MS. Regardless of the dose, CS treatment resulted in a reduction of fecal ETEC: F4 and total E. coli shedding, and in diarrhea scores but only during the treatment period. However, CS treatment resulted in a slight increase in fecal shedding of CS resistant E. coli and did not prevent weight loss in challenged pigs. In addition, challenge with ETEC: F4 resulted in an increase of CS intestinal absorption. Our study is among the first to demonstrate that under controlled conditions, CS was effective in reducing fecal shedding of ETEC: F4 and total E. coli in experimental PWD. However, CS treatment was associated with a slight selection pressure on E. coli and did not prevent pig weight loss. Further studies are needed in field conditions, to better characterize CS therapeutic regimen efficacy and bacterial resistance dissemination.
منابع مشابه
Gastric stability and oral bioavailability of colistin sulfate in pigs challenged or not with Escherichia coli O149: F4 (K88).
The aim of the present study was to investigate the in vitro gastric stability of colistin sulfate (CS) and its antimicrobial activity against Escherichia coli and to study the impact of ETEC O149: F4 (K88) infection in pigs on CS intestinal absorption. The stability profile of CS was evaluated in a simulated gastric fluid (SGF). Antimicrobial activity of CS and its degradation products were ex...
متن کاملIncreasing the viscosity of the intestinal contents stimulates proliferation of enterotoxigenic Escherichia coli and Brachyspira pilosicoli in weaner pigs.
The present study was designed to evaluate the effect of increased viscosity of the intestinal digesta on proliferation of enterotoxigenic Escherichia coli and the intestinal spirochaete Brachyspira pilosicoli in weaned pigs. Pigs were fed an experimental diet based on cooked white rice (R), which was supplemented with carboxymethylcellulose (CMC; 40 g/kg diet) to increase digesta viscosity. Th...
متن کاملImmunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs). These structures contain various immunogenic vi...
متن کاملEnterotoxigenic Escherichia coli infection in pigs and its diagnosis
7 5 1 O c a 8 1 F b T S , a T S ± e 2 x t S + o N s e Y Table 1: Characteristics of enterotoxigenic Escherichia coli (ETEC) strains associated with infections in pigs of various ages1 Enterotoxigenic Escherichia coli (ETEC) is a major cause of illness and death in neonatal and recently weaned pigs. However, pigs older than approximately 8 weeks appear to be resistant to infection. Strains of ET...
متن کاملEnterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...
متن کامل